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Abstract

Seat racing is a procedure to �nd the strongest rowers in a squad.

This paper looks into the underlying math of using 6 races of 2 boats

with 4 athletes each over a set distance for which �nishing times are

recorded. Between races rowers swap between boats according to a

swapping matrix S. Each rower is either rowing on starboard or port.

From the recorded �nishing times the power contribution of each rower

can be inferred using a generalised inverse. The result provides a rank-

ing of athletes per side.

Seat racing is a procedure used by rowing coaches to �nd the strongest
athletes from a squad for a crew boat. While the general �tness of an athlete
can be observed from land training, his or her ability to �move the boat�
within a crew is more di�cult to quantify. Seat racing is used to bring
objectivity and transparency to the selection process of �nding the best crew
for a boat. This paper takes a fresh look at a method that works along the
following principles:

1. Eight rowers are split repeatedly into two crews of four and race against
each other in two boats under controlled conditions for a �xed distance
(like 1000m).

2. After each race rowers between boats are swapped according to a �xed
plan. The process continues over a total of 6 races.

3. Each rower is either rowing always on starboard (right) or port (left).
This implies that the eight rowers are comprised of four for each side.
The 4+/4- in the title refers to the class of boat being used: 4 rowers
in a boat with or without a coxswain.

4. For each race the �nishing time for each boat is recorded.

The goal of the method is to infer from the recorded �nishing times a
ranking of the athletes (per side) in terms of speed contribution.
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1 Example

We will discuss the method based on an example [1] in Table 1. It is com-
prised of 6 races over 1000m. In each race two boats of 4 rowers race against
each other. Rowers are identi�ed as 1 to 4 (rowing on starboard) and A to
D (rowing on port). Each crew has two rowers on each side.

What crews are racing each other is �xed and not random. We will see
that this swapping matrix has important properties for this method to work.

crew race boat time [s]

12AB 1 1 211.54
34CD 2 211.46

24AC 2 1 199.46
13BD 2 204.30

23BC 3 1 200.97
14AD 2 206.29

12CD 4 1 202.49
34AB 2 199.47

24BD 5 1 205.79
13AC 2 205.98

23AD 6 1 205.78
14BC 2 205.81

Table 1: Crews of 4 rowers race pairwise in 6 races over 1000m with the
resulting times in seconds. Rowers are identi�ed as 1 to 4 and A to D.

2 Problem Statement

Most descriptions of seat racing in the rowing literature talk about one rower
being faster than another by a margin of time. While this is what it looks
like, it is more the e�ect than the cause. The speed of a crew boat is the
result of the e�ort of its crew and time cannot be attributed to individual
crew members. What is happening is that each rower contributes power to
the propulsion of the boat. It is helpful to think about individual power
and the combined power of the crew. What seat racing really aims for is to
uncover the power contribution of each rower.

When a boat with 4 crew members travels a distance d in time t, its
average speed is v = d/t and the average power P required depends on a
drag factor k:

P = k × v3 (1)
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Drag factor k depends on the boat's shape, crew weight and other details.
However, we are mostly interested in the relative power of rowers and can
live with an approximation of k = 2.8 × 4. This gives use for each race the
average power of the crew. For example, a time of 211.54s corresponds to

P = 2.8× 4× (1000/211.54)3 = 1183.15watt.

We make the following assumptions:

1. The power of a crew is the total of the power of its members and

2. each crew member m produces in each race the same amount of power
xm.

Power x is the number that we are looking for each rower. Power is an
interesting measure because it is known for each rower from land training,
too, and so it o�ers a comparison. Restating Table 1 in terms of power using
Equation 1 leads to Table 2.

crew race boat time [s] power [W] adj adj. power [W]

12AB 1 1 211.54 1183.15 1.10 1303.02
34CD 2 211.46 1184.50 1304.49

24AC 2 1 199.46 1411.40 0.96 1350.62
13BD 2 204.30 1313.45 1256.89

23BC 3 1 200.97 1379.83 0.98 1354.82
14AD 2 206.29 1275.80 1252.69

12CD 4 1 202.49 1348.99 0.94 1274.37
34AB 2 199.47 1411.19 1333.14

24BD 5 1 205.79 1285.12 1.02 1305.56
13AC 2 205.98 1281.57 1301.95

23AD 6 1 205.78 1285.31 1.01 1304.04
14BC 2 205.81 1284.75 1303.47

Table 2: Race results restated in terms of implied crew power. Column
power is the power based on equation 1. This leads to the total power of
both crews in a race to vary across races. Adjusted power corrects this such
that the total power in each race is equal to the avarage total power.

Race 4 is faster than race 1, maybe because of wind or stream or the
distance was slightly shorter than 1000 meters. The total power of the rowers
in race 4 therefore is seemingly higher than the total power of the same
rowers in race 1 � which contradicts our assumptions. We do not know yet
how signi�cant this is, as it a�ects both crews in a race, but we can try to
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adjust the power in each race by a factor adj such that the total power in all
races is constant and equals the average total power. This results in column
adj. power in Table 2.

The problem of inferring the power contribution of each rower from the
race results can be stated as a system of linear equations in matrix form:

1 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0
0 1 1 0 0 1 1 0
1 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 0 1 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
0 0 1 1 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0



×



x1
x2
x3
x4
xA
xB
xC
xD


=



1303.02
1350.62
1354.82
1274.37
1305.56
1304.04
1304.49
1256.89
1252.69
1333.14
1301.95
1303.47


or more succinctly as

Sx = P (2)

where S is the swap matrix, x the power of each rower, and P the observed
crew power (for which we used the adjusted power from Table 2). We are
now looking for vector x, which assigns power to each rower, such that this
matches the observed power.

3 Inferring Power

Solving Sx = P for x is not straight forward: S is not square and therefore
has no inverse. The left inverse S′ with S′S = I does not exist because
rank(S) = 7 < 8. But S has a unique generalised inverse S+ which we can
use to describe all solutions.

S+ =
1

48



+7 −5 −5 +7 −5 −5 −5 +7 +7 −5 +7 +7
+7 +7 +7 +7 +7 +7 −5 −5 −5 −5 −5 −5
−5 −5 +7 −5 −5 +7 +7 +7 −5 +7 +7 −5
−5 +7 −5 −5 +7 −5 +7 −5 +7 +7 −5 +7
+7 +7 −5 −5 −5 +7 −5 −5 +7 +7 +7 −5
+7 −5 +7 −5 +7 −5 −5 +7 −5 +7 −5 +7
−5 +7 +7 +7 −5 −5 +7 −5 −5 −5 +7 +7
−5 −5 −5 +7 +7 +7 +7 +7 +7 −5 −5 −5


(3)
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All solutions for rower power x given crew power P in Equation 2 are
given by

x = S+P + c
[
+1 +1 +1 +1 −1 −1 −1 −1

]T
(4)

for an arbitrary constant c. The fact that an in�nite number of solutions
exist may surprise you and call into the question the method. But it is not as
bad as it sounds. First, you could verify that all solutions in Table 3 indeed
respect Equation 2, i.e., the observed race times.

Equation 4 is speci�c to the swap matrix S used here and does not hold
for arbitrary swap matrices. The inverse S+ is speci�c, too, and in this case
S+ = (ST × 12− 1× 5)/48.

Power x [W]

rower c = 0 c = 10 c = 30

1 293.40 303.40 323.40
2 343.42 353.42 373.42
3 334.14 344.14 364.14
4 332.80 342.80 362.80

A 331.67 321.67 301.67
B 334.53 324.53 304.53
C 342.74 332.74 312.74
D 294.82 284.82 264.82

Table 3: Power assignments that are consistent with race times. Observe
that the di�erence in power between rowers of one side (1 to 4 and A to D) is
constant across all solutions. Solutions di�er only by shifting power between
sides.

4 Results

Table 3 provides the answers we are looking for but we need to be a little
careful with the interpretation:

1. The strongest rowers on starboard are 2, 3, 4, 1 in this order.

2. The strongest rowers on port side are C, B, A, D in this order.

3. We can't tell who is the strongest rower across sides because power
shifts between sides are not detected by the method. Parameter c
basically models this shift. Across all solutions, the di�erence in power
between rowers of one side remains constant and leads to an order
independent of c.
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4. With c = 0 the combined power of rowers of 1 to 4 and A to D is equal.
This makes it a somewhat more likely to be the true scenario than a
solution with a large parameter c.

5. The swap matrix S and its generalised inverse S+ are �xed and in-
dependent of the race results. They can be used to implement the
method as a spreadsheet.

6. The drag factor k = 2.8 × 4 chosen in Equation 1 could be adjusted
without impacting the order of rowers but in order to match the ob-
served power on the water to power observed in land training.

7. The swap matrix S used here is not the only possible but it needs to
be chosen carefully for Equation 4 to be valid.

We have used the adjusted power in Table 2 to compensate for the fact
that the total observed raw power between races varied. This might not
be necessary as long as it a�ects both crews equally. Computing the power
based on raw power and c = 0 yields an almost identical result with the
largest di�erence being 1.21W for rower D and the di�erence being smaller
than 1W for most rowers.
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