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Abstract

Formal concept analysis is increasingly used for large contexts that
are built by programs. This paper presents an efficient algorithm for
concept analysis that computes concepts together with their explicit
lattice structure. An experimental evaluation uses randomly generated
contexts to compare the running time of the presented algorithm with
two other algorithms. Running time increases quadratically with the
number of concepts, but with a small quadratic component. At least
contexts with sparsely filled context tables cause concept lattices grow
quadratically with respect to the size of their base relation. The growth
rate is controlled by the density of context tables. Modest growth
combined with efficient algorithms lead to fast concept analysis.

1 Introduction

Concept analysis has proven to be a valuable tool for gaining insight into
complex data [5, 16]. In many applications of concept analysis experts learn
from formal contexts by inspecting their carefully layed out concept lattices.
Contexts in these applications tend to have a modest size. Otherwise, the
resulting concept lattices are hard to analyze visually, even with support of
tools like Toscana [17]. The algorithmic complexity of concept analysis for
these applications is consequently a minor concern. But concept analysis is
used increasingly for applications like program analysis inside a compiler or
is combined with statistical analysis where large contexts are constructed by
a program [14, 15, 11]. The resulting concept lattice is no longer inspected
visually but is part of an application’s internal data structure. For these
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applications the algorithmic complexity of concept analysis does matter.
This paper presents an efficient algorithm for computing the concept lattice
and some empirical complexity results.

2 Computing the Concept Lattice

Ganter’s algorithm NextConcept is probably the best known algorithm
for concept analysis [3, 4]. It computes all concepts L(G,M, I) from a
context (G,M, I) in a total lectical order. The algorithm’s asymptotic run-
ning time O(|G|2 × |M|× |L(G,M, I)|) depends only linearly on the size of
the concept lattice. Most applications of concept analysis not only use the
concepts (G, M) from L(G,M, I) but their lattice structure as well. The
explicit lattice structure is made up from the upper and lower neighbors of
each concept. The lattice structure itself is not immediately available from
Ganter’s algorithm (and the set of all concepts) since it is an implicit prop-
erty of concepts. So most applications of concept analysis need an algorithm
that computes both concepts and their explicit lattice structure.

For a finite context (G,M, I) all concepts and their lattice structure
can be computed by finding all upper neighbors of a concept: starting from
a known concept, a small set of greater concepts can be computed that is
known to include all upper neighbors. These can be identified by an efficient
test. Starting at the well known smallest concept of a lattice the algorithm
recursively computes all concepts and their lattice structure.

Given a concept (G, M) that is distinct from the maximum > of L, the
following set S contains concepts greater than (G, M):

S = {((G ∪ {g})′′, (G ∪ {g})′) | g 6∈ G}

Every g not already part of G generates a concept ((G∪{g})′′, (G∪{g})′).
The set S of all such concepts contains at most |G| members; each member
is greater than (G, M) but not necessarily an upper neighbor. Theorem 1
identifies the upper neighbors of (G, M) among the concepts in S.

Theorem 1 Let be (G, M) ∈ L(GM, I) and (G, M) 6= >. Then (G∪{g})′′,
where g ∈ G \G, is an extent of an upper neighbors of (G, M) if and only if
for all y ∈ (G ∪ {g})′′ \G the following holds: (G ∪ {y})′′ = (G ∪ {g})′′. A
proof can be found in [11].

Monotony of ′′ ensures that every extent in S is a super-set of the en-
larged extent: G ∪ {g} ⊆ (G ∪ {g})′′. For an upper neighbor all elements
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Figure 1: Sketch for Theorem 1. Large circles represent concepts that in-
clude their extents as small circles. An arrow between an object outside
of a concepts and a greater concept visualizes the generation of the greater
concept by adding the object to the concept next to it. Solid lines between
concepts denote their lattice structure.

added by the ′′-Operator (G ∪ {g})′′ \ (G ∪ {g}) themselves generate this
extent. The principle is illustrated by the extents of three concepts shown
in Fig. 1: adding any of the two white objects at the bottom to the extent
of the concept to their right yields the extent on the left. It includes all
(black) objects from the bottom concept plus the two white objects. This
extent belongs to a upper neighbor of the bottom concept because every new
(white) object generates the concept. Adding the grey object to the concept
at the bottom yields the top extent. It includes the grey object and also the
white objects inherited from the left concept. Thus it does not belong to a
an upper neighbor because some of its objects generate a different concept.

When the grey object is added to the concept on the left it again gen-
erates the concept at the top. This time the top concept is is an upper
neighbor because the grey object is the only new one and it generates the
concept that it is part of.

The observation from Theorem 1 is captured by Algorithm Neighbors

in Fig. 2 that computes the upper neighbors of (G, M). For every concept
generated by g ∈ G \G it tests all elements added by the ′′-operator. When-
ever an element is found that (a) is different from g, and (b) is not part
of the initial G, and (c) itself generates an upper neighbor (as recorded in
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Neighbors ((G, M), (G,M, I))
1 min ← G \G
2 neighbors ← ∅
3 foreach g ∈ G \G do

4 M1 ← (G ∪ {g})′

5 G1 ←M ′
1

6 if ((min ∩ (G1 \G \ {g})) = ∅) then

7 neighbors ← neigbors ∪ {(G1, M1)}
8 else

9 min ← min \ {g}
10 return neighbors

Figure 2: Algorithm Neighbors computes the upper neighbors of a concept.

min), the actual extent may not belong to an upper neighbor; in that case
g is removed from min.

The meaning of the set min used by the algorithm is a bit difficult to
grasp: it contains elements from G \G that generate upper neighbors. Ini-
tially all elements are assumed to generate neighbors and later elements are
removed that possibly do not. At the end of the algorithm min is a minimal
set of elements that generate the complete set of upper neighbors.

The algorithm is best understood by the means of an example: assume
that G1 is the extent of an upper neighbor of (G, M). Both x and y generate
G1 and are considered by the algorithm in that order. Initially both x and y
are members of min. First all members of G1 different from x—y is among
them—are checked against min: y is found in min and so x is (falsely)
assumed not to generate an upper neighbor and is removed from min. Next
all elements (x) different from y are checked: x is no longer in min and thus
the concept generated by y is known to be an upper neighbor. Whenever a
neighbor is generated by a number of elements from G \G, only the last one
considered by the algorithm is detected as neighbor-generating and therefore
stays in min.

The asymptotic complexity of Algorithm Neighbors is O(|G|2 × |M|):
computing the hull using the ′′-operator takes O(|G| × |M|) and is required
|G| times when G is empty.

Algorithm Neighbors can be employed to recursively compute all con-
cepts L of a context by starting from the smallest concept (∅′′, ∅′) of the
lattice; the resulting Algorithm Lattice is shown in Fig. 3. Every concept
c has two lists associated with it: the list c∗ of its upper neighbors and the
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Lattice (G,M, I)
1 c← (∅′′, ∅′)
2 insert (c, L)
3 loop

4 foreach x in Neighbors (c, (G,M, I))
5 try x← lookup (x, L)
6 with NotFound → insert (x, L)
7 x∗ ← x∗ ∪ {c}
8 c∗ ← c∗ ∪ {x}
9 try c← next (c, L)

10 with NotFound → exit

11 return L

Figure 3: Algorithm Lattice computes the concept lattice of (G,M, I).

list c∗ of its lower neighbors.
One concept may be shared by two different concepts as their upper

neighbor. While the algorithm processes each of the two concepts their
shared upper neighbor must be detected in order to get the relationships
right. For this purpose all concepts are stored in a search tree L [2]. Each
time the algorithm finds a neighbor it searches it (using lookup) in the tree
L to find previously inserted instances of that concept. In case the concept
is found, the existing lists of neighbors are updated; otherwise the previously
unknown concept is entered into the tree.

The algorithm inserts concepts into L and looks them up at the same
time: next(c, L) asks for the smallest concept that is greater than c with
respect to the total order ≺ used inside the tree. To make sure all concepts
that are inserted are also considered for their upper neighbors, the total
tree order ≺ must relate to the partial lattice order ≤ in the following way:
c1 < c2 implies c1 ≺ c2. This way recently inserted neighbors are greater
than the actual concept with respect to ≺ and will be considered later by
next. The lectical order defined by Ganter for Algorithm NextConcept

can be used as tree order ≺ for this purpose.
The asymptotic worst case complexity of Algorithm Lattice is O(|L| ×

|G|2×|M|) since the operations on the search tree do not add to the complex-
ity. It thus has the same asymptotic complexity as Ganter’s NextConcept

algorithm.
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Table 1: Some figures about the randomly generated contexts.
Parameter min max avrg std dev

context size |I| 2 1 572 209.7 229.9
lattice size |L| 1 11 148 330.7 896.0
context fill ratio 0.01 1.00 0.17 0.15

3 Evaluation

For evaluation NextConcept and Lattice were implemented and applied
to randomly generated contexts. The implementation used the Objective
Caml system, a functional programming language and dialect of Standard
ML that is known for emitting effective native code [8, 12]. All tests were
ran on an otherwise idle 200 MHz AMD K6 Linux 2.0 system.

The experiment used 1 000 randomly generated contexts (G,M, I). Their
corresponding context tables were between 1 × 2 and 81 × 81 elements in
size, where I contained up to 1 572 elements. These figures together with
their averages and standard deviations are shown in table 1. A context table
holds up to |G|× |M| elements; the size of the relation I with respect to the
maximum size is called the context fill ratio and is the quotient of |I| and
|G| × |M|. The random process created small contexts with small fill ratios
more frequently than other contexts; both parameters contribute to small
concept lattices as we will see below.

For each randomly generated context the corresponding concept lat-
tice was computed using NextConcept and Lattice. Additionally, a
third Algorithm Concepts was applied; it is used in the author’s program
concepts which has gained some popularity for computing concept lattices
in the past [10]. It was re-implemented in Objective Caml and utilizes Algo-
rithm NextConcept internally. Algorithm Concepts detects the lattice
structure by post-processing the output of Algorithm NextConcept which
takes O(|L|2) time. It basically implements the Algorithm Ganter-Alaoui

as described by Godin et al. in [6]. For all algorithms the CPU time spent
versus the lattice size is shown in Fig. 4.

Although the overall lattice structure has some impact on the running
time of all algorithms, running time depends foremost on lattice size |L|:
Fig. 4 shows polynomial approximations for this dependency, which were
gained from the least-square method; coefficients for all approximations can
be found in table 2.

Algorithm NextConcept turned out to be the most effective which
comes as no surprise, since it computes the set of all concepts only. Com-
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Figure 4: Running time of algorithms versus lattice size.

Table 2: Coefficients of polynomials t = a2|L|
2+a1|L|+a0 for approximating

runtime measured in AMD K6 200 CPU seconds.
Algorithm a2 a1 a0

Concepts 6.721×10−7 -0.00043 0.04699
Lattice 7.764×10−8 0.00116 -0.03158
NextConcept 3.255×10−8 0.00026 0.00101

puting concepts as well as their lattice structure takes twice as long for
the same input when Algorithm Lattice is used. The runtime of both
algorithms increases quadratically with the size of the concept lattices but
the quadratic component is small. Thus, they both result in fast concept
analysis. This stands in contrast to Algorithm Concepts’s runtime that
increases also quadratically but at a much larger rate.

Since most applications of concept analysis need the lattice structure of
concepts explicitly Algorithm Lattice is a natural choice. As it is easy
to implement it could be considered even when the lattice structure is not
required. A minor drawback compared with Algorithm NextConcept is
memory utilization: while Algorithm NextConcept computes a concept
solely from a single predecessor, Algorithm Lattice stores all concepts in
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Figure 5: Lattice size |L| versus context size |I|.

a (main memory) persistent search tree.

4 Size of Concept Lattices

Concept lattices can grow exponentially in size with respect to their contexts
[5]. However, this happens rarely in practical applications where concept
lattices tend to be much smaller. Since running times of the algorithms
presented here depend on lattice size, the actual size of concept lattices is
of some interest. It has been investigated with an experiment that aimed to
identify those context parameters controlling lattice size.

The experiment contained 3 187 pairs of a randomly generated context
(G,M, I), and its concept lattice. Context table sizes |G| × |M| varied be-
tween 19×87 and 201×193, relation sizes |I| between 38 and 3 792. Contexts
were roughly equally distributed with respect to |G|, table side length ratio
min(|G|/|M|, |M|/|G|), and context fill ratio. Small relations (where size
is measured by |I|) were more frequent than large ones. All contexts had
a fill ratio below 0.1 and therefore had sparsely filled context tables. The
experiment was restricted to these contexts because it was originally carried
out for component libraries where sparse contexts are common [9, 11].
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Table 3: Approximations of lattice size |L| = a2|I|
2+a1|I|+a0 for different

context classes. Parameter n denotes the class cardinality.
fill a2 a1 a0 n min |I| max |I|

0.00. . . 0.02 -3.0688×10−5 0.58955 13.776 357 70 592
0.02. . . 0.04 3.6527×10−5 0.48174 14.153 599 38 1282
0.04. . . 0.06 0.00032621 0.26237 52.876 685 51 2286
0.08. . . 0.08 0.00048146 0.29659 36.275 697 74 2856
0.08. . . 0.10 0.00067034 0.29714 40.730 849 105 3792

While looking for functional relations between a context and its num-
ber of concepts, different context parameters were considered. The context
parameter found to predict the size of a lattice best was context size |I|:
Fig. 5 shows the observed lattice size versus context size; each dot in the
graph represents a single experiment. At least for sparse contexts lattice,
size does not grow exponentially but quadratically with respect to context
size |I|.

As a second parameter, the context fill ratio |I|/(|G|×|M|) was found to
have some impact on the lattice size. Coloring the dots in Fig. 5 according
to their context fill ratio would yield distinctly colored areas. The figure
instead shows polynomial approximations for five different classes of con-
texts, where classes are based on fill ratios. Table 3 shows the classes and
the approximations found for contexts in this classes. The largest concept
lattices were observed for large contexts that had also a high fill ratio, which
means their context table were relatively dense.

5 Comparison

Algorithms to compute concept lattices and the size of concept lattices have
been studied before

[13, 6, 1, 4]. Although the two algorithms presented here do not lead to
improved complexity results, they are based on a new theorem that leads to
a remarkable simple implementation of concept analysis.

Godin et al. presented an incremental algorithm to recompute the con-
cept lattice after adding a new object g ∈ G and a set M ⊆ M of related
attributes [6]. Due to the incremental aspects, their results are not di-
rectly comparable. They found the running time of their algorithm to be
quadratically increasing at a slow rate with respect to the size of |G|. While
comparing their algorithm with one similar to Algorithm Concepts they
also noted that post-processing the output of NextConcept (to get the
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lattice structure) is inefficient.
Godin et al. and Carpineto at al. investigated the size of concept lat-

tices. They used both real live data for experiments as well as uniformly
distributed data similar to the experiments in section 4. Although real live
data give important insight into an algorithm’s behavior they are difficult
to reproduce. Because the size of lattices depends on may variables even
benchmarks are hard to design. When only a small number of variables is
chosen to predict lattice size, the classes of equivalent contexts are large.
This is honored by our experiments which use a much larger number of test
cases than earlier experiments.

Both Godin et al. and Carpineto et al. considered lattice size as a function
of the total number of objects |G|, the total number of attributes |M|, and
the average or fixed number of attributes per object. We found the context
size |I| to be the primary variable the lattice size depends on. We therefore
propose to use it for future experiments. However, the context fill ratio
that we found as a secondary variable relates to the notion of attributes per
object used earlier. Their experiments, as well as ours, show a quadratic
growth of the number of concepts with increasing context size.

In [6] and [7] Godin et al. suspected the lattice size to increase linearly
with the number of attributes per object. Our experiments suggest that
this may be only the case when this number is small: looking at a fixed fill
ratio the average number of attributes per object increases linearly with the
context size |I|. At least at a fill ration around 0.1 we found in Fig. 5 the
lattice size to increase quadratically rather than linearly. A similar note was
made by Carpineto et al. in [1].

6 Conclusions

Computing all concepts from a context (G,M, I) takes time linear to the
size of the resulting concept lattice L(G,M, I). This holds for Algorithm
NextConcept that computes all concepts, as well as Algorithm Lattice

that additionally computes the neighbors of all concepts. Since most ap-
plications require the lattice structure explicitly, and Algorithm Lattice is
easy to implement, it is an all-purpose concept analysis algorithm.

Memory requirements and locality are two main differences between
Lattice and NextConcept: the former needs random access to all con-
cepts and thus requires them to be stored in main memoryr. The latter com-
putes concepts one by one, so they can be written to a file. Using Algorithm
Neighbors, which is part of Algorithm Lattice, just the neighborhood of
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a concept can be determined without computing the rest of the lattice. This
is difficult to achieve using Algorithm NextConcept since the total order
that concepts are computed in does not respect neighborship.

Concept lattices can grow exponentially with respect to their underlying
relation. However, at least when their context tables are sparsely filled, they
tend to grow only quadratically where the density of context tables controls
the growth rate. The modest growth found in experiments together with
the presented efficient algorithm lead even overall to fast concept analysis.
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