
A Concept Analysis Framework

Christian Lindig

Technische Universität Braunschweig
Institut für Programmiersprachen

und Informationssysteme
D-38106 Braunschweig

Germany
Phone: +49 531 391 7465
Fax: +49 531 391 8140

Email: lindig@ips.cs.tu-bs.de

Concept analysis has been found a powerful data analysis tool since its in-
vention over 10 years ago. More and more applications use concept analysis in
a domain specific way. However, software designers are still forced to devote
too much work on implementation of analysis techniques because most existing
software can not be incorporated into new applications. This paper describes a
software framework that provides domain independent abstractions for the two
most common concept analysis structures: binary relations and concept lattices.
The framework is implemented as an extension of the popular Tool Command

Language (Tcl) for concept analysis operations. Tcl is an interpreted extension
language which already provides abstractions for common application tasks. Us-
ing the framework the software designer develops software in a convenient in-
terpreter environment and takes advantage of the provided abstractions for con-
cept analysis. This can lead either to small “scriptable” tools, or, in conjunction
with other extensions of Tcl, to full featured applications. As an example an
interactive and graphical concept analysis workbench has been developed. The
described software and its documentation is distributed via the world wide web.

A Concept Analysis Framework

Christian Lindig

Abteilung Softwaretechnologie
Technische Universität Braunschweig

D-38106 Braunschweig
EMail: lindig@ips.cs.tu-bs.de

Abstract. Concept analysis finds its way into applications, but support
for software developers is lacking: programmers must still concentrate on
concept analysis techniques instead of application domains. TkConcept
is a framework for concept analysis applications that offers domain in-
dependent support for concept analysis tasks. It is implemented as an
extension of Tcl/Tk and provides abstractions for binary relations and
concept lattices. Using this framework, concept based applications can
be developed easier than with existing tools.

1 Introduction

Concept analysis was invented over 10 years ago by Wille [15] and has been found
a powerful data analysis tool since then (cf. [3]). Although research is still going
on (cf. [4, 3] for an overview), more and more concept based applications emerge:
access control [11], software engineering [6, 2], and retrieval [7, 5] applications
use concept analysis.

When creating a concept based application the designer realizes, that most
existing concept analysis software is of little help for this task: it is either a
specific application for a different domain, or an analysis tool which can not be
used as a building block. So the designer has to devote too much work on mere
implementation details of concept analysis techniques instead of the application
domain. It would be helpful to use a framework that already provides all the
common techniques in an abstract and domain independent way.

We propose TkConcept as such a framework to let the designer concentrate
on the application. TkConcept is build as an extension of the increasingly popular
Tool Command Language Tcl which already provides a rich set of abstractions for
“real world” applications. TkConcept can be regarded either as a “scriptable”
concept analysis tool with programmable in- and output formats or, together
with other extensions, as full featured programming language for concept based
applications.

2 TkConcept

2.1 The Tool Command Language

The Tool Command Language Tcl [9, 10] is a scripting language: it is interpreted
and based on the only data type string. Tcl serves as a base for TkConcept—

together they are forming a framework. Tcl provides variables, control structures
and access to many system features likes files and processes. It is, thus, similar
to other shell languages like the Bourne Shell, but, unlike that, Tcl is explicitly
designed to be extendible: the system is organized as C code library, implement-
ing an interpreter together with a set of common commands. New commands,
implemented in C, can be added as an extension to provide new domain spe-
cific abstractions. Once new commands are added they are indistinguishable
from other built in commands. TkConcept is implemented as such an extension
providing efficiently implemented operations for concept analysis.

2.2 Abstractions for Concept Analysis

Up to now, TkConcept supports the two basic structures in concept analysis:
binary relations and concept lattices. To calculate the concept lattice of a con-
text a relation must be created first. This is done by the relation command
which turns the contents of an array into a relation. The relation then can be
used to calculate the corresponding concept lattice. Runtime created commands
represent relations and lattices; this leads to an object oriented flavor as the
parameters passed to such commands can be regarded as methods passed to
objects. The created commands permit access to all informations inherent to
relations and lattices. In principle, a relation abstraction is not necessary to cal-
culate concept lattices as relations can be represented by arrays. Nevertheless,
having such an abstraction is efficient, convenient, and fits better to the model
suggested by concept analysis theory. Among others, the relation abstraction
offers the following features:

– Persistence. Relations can be written to and read from files.
– Attachments. Additional informations can be attached to objects and at-

tributes. They help to establish connections between a relation and other
program data structures.

– Query of common items. For lists of objects and attributes the lists of their
common attributes and objects can be queried.

– Concept lattice calculation. From a binary relation its concept lattice can be
computed. The lattice computing command creates a new command to rep-
resent the resulting lattice; the new command permits to access the lattice.

Figure 1 shows a small example for some relation operations. Micro proces-
sor architectures as objects are related to multi-platform operating systems as
attributes. First, an array is filled with facts about architectures and processors.
Then the relation command creates a relation from the array, that is, it cre-
ates a new command for accessing it, and returns the command’s name which
is stored in a variable rel. For every operating system the related architetures,
just the objects related to the operating system, are reported.

For concept-based applications the concept lattice derived from a relation
is naturally the most important information. The concept lattice abstraction
provides the following operations:

set platform(sparc) { NextStep }

set platform(ppc) { MacOS OSF1 }

set platform(i486) { NextStep Linux }

set platform(m68k) { MacOS Linux }

set platform(alpha) { OSF1 }

create relation, and save command name for access and save

it to a file

set rel [relation create platform]

$rel save "platform.rel"

loop over all operating systems

foreach os [$rel attributes] {

find architectures related to $os

set archs [$rel objects -attribute $os]

puts "Operating System $os runs on architectures $archs"

}

Fig. 1. Example for binary relation abstraction

– Persistence. Concept lattices can be saved to files. This can lead to signif-
icant performance improvements of an application because the calculation
of a concept lattice from a relation is computationally expensive. Loading a
precalculated lattice avoids its recalculation.

– Lattice operations. Concepts can be queried, compared, met, and joined.
Concepts are represented by short string handles. These handles are returned
by some operations and can be used to investigate the represented concepts
further.

– Attachments. Informations can be attached to concepts, serving as links
between concepts and other data. This applies also to objects and attributes
which are part of a lattice.

– Sub-/super concepts. For each concept its sub- and super-concepts can be
obtained. The lattice abstraction distinguishes between direct sub/super con-
cepts and the transitive closure. This makes it easy to create line diagrams
of lattices.

Figure 2 shows, as a small example, some Tcl-code which loads a relation
from a file, calculates its concept lattice, and traverses it from the top. For
each concept the objects introduced by the visited concept are printed; to avoid
duplicates each visited concept is marked.

The example in Figure 2 is somewhat hard to understand for readers un-
familar with Tcl’s syntax and operational semantics. However, it shows that a
few lines of code are sufficient to code a concept lattice traversal. There is an
even simpler way to achieve the same result, as shown below. All concepts of
a lattice are also returned by the concepts sub-command. So it is sufficient to

set rel [relation "platform.rel"]

create concept lattice

set lat [$rel lattice]

start at top concept

set top [$lat top]

concepts holds the concepts still to visit - starting from

the top concept

set concepts [list $top]

while {$concepts != {}} {

the actual concept is the first one of $concepts

set concept [lindex $concepts 0]

remove the first concept one from concepts

set concepts [lrange $concepts 1 end]

don’t visit concept, if already visited

if {[$lat attach concept $concept] != "visited"} {

mark concept visited

$lat attach concept $concept "visited"

get all objects introduced by the actual concept

set objs [$lat objects -new $concept]

puts "new objects at $concept: $objs"

add direct subconcepts to list of concepts to check

set concepts [concat $concepts\

[$lat sub -direct $concept]]

}

}

Fig. 2. Example for concept lattice traversal

query each of them for the introduced objects and to print them.

foreach c [$lat concepts] {

puts "new objects at $c: [$lat objects -new $c]"

}

The abstractions for relations and concept lattices are domain independent
and fit seamlessly into the Tcl system. Together Tcl and the concept analysis
extension form a framework for all kinds of concept analysis tasks.

2.3 Why extending Tcl?

Extending Tcl to build a framework is not the only imaginable solution and the
question arises why Tcl was chosen. Indeed, Tcl has some severe limitations: it

lacks user defined types, compilation and sophisticated scoping rules. On the
other hand, Tcl is explicitly designed as an extension language. Currently, there
are more than hundred extensions for all kind of tasks in “real world” appli-
cations: extensions for database access, distributed computing, network man-
agement, or object orientation which all can be combined. The Tk-extension for
Motif style user interfaces provides a uniquely powerful abstraction which makes
the development of such user interfaces a lot easier. Tcl and its extensions are
portable between different computer platforms. Development in an interpreter
environment is convenient and secure as errors are traped and do not lead to un-
recoverable crashes. Because more complicated operations are implemented as C
code extensions they do not cause performance loss. Tcl is an increasingly pop-
ular programming system—there is excellent documentation for programmers
and extension authors available. This does not necessarily compensate its pro-
gramming language limitations but addresses problems which are also important
for all kinds of applications and which are often neglected by other systems.

3 Experiences

TkConcept was born out of negative experiences with previous concept analysis
implementations: simple batch oriented concept analysis tools with fixed input
and output syntax. It turned out that nearly every application required a change
of the input and output syntax and, thus, required a specialized version of the
analysis tool. Although most users prefer graphical user interfaces, a batch anal-
ysis is still handy and, so, one of the first applications built with TkConcept was
such a tool. It computes a concept lattice from an input file, and it is controlled
by command line options. Unlike the previous version, changes to its behavior
do not require changes to C code and recompilation but changing a small Tcl
source file.

A predecessor of TkConcept has been used to implement a search tool [8]
for software component documentation based on a concept analysis of the doc-
umentation. The flexibility gained over a previous C++ coded version of the
search tool was the motivation to build a general framework for concept analysis
applications. It turned out that dividing the application into a concept analy-
sis Tcl-extension and application-specific Tcl-code made the development easier.
Especially, testing the extension and application was improved by using an in-
terpreter environment.

To show the usefulness of the TkConcept framework a Concept Analysis

Workbench was developed which may be interesting for the concept analysis com-
munity independent of its implementation technique. The following list shows
its main features:

– Completely interactive, graphical user interface.
– Objects, attributes, and relations can be entered, edited, saved, and loaded

easily.
– For a relation its concept lattice can be computed; it is displayed as a diagram

in a graph editor.

– The graph editor permits to layout the diagram automatically or manually.
Concepts can be joined or met and their contents can be investigated.

Fig. 3. Concept Analysis Workbench

Figure 3 shows a screen shot of the workbench. It is implemented within
about 2000 lines of Tcl code and uses the commands provided by the TkConcept
extension. The automatic lattice layout is realized using the external, batch
oriented graph layouter graphplace [12].

4 Related Work

Toscana [14] is a graphical and interactive concept analysis tool developed by
Wille’s group. It runs on Microsoft Windows platforms and gets its input from a
SQL database. Toscana is intended for scaled contexts which result in nested line
diagrams. The diagram layouts are combined from predefined lattice layouts to
achieve good results. So, it is not a framework or a building block that helps to
create new applications but is itself a generic application similar to the Concept

Analysis Workbench. In comparison, Toscana is more sophisticated, in some
sense, as it can analyze scaled contexts which stem from multi valued contexts,

and can display them nicely. On the other hand, it is not user extendible, nor
portable, nor does it provide fully automatic layouts, and it requires a database
to read the input from.

The functional kernel of Toscana is the Concept Analysis Library, a C++
library [13]. As it provides some basic functionality for concept analysis it is
directly related to TkConcept. It differs in the analysis technique (scaled contexts
in contrast to binary contexts), the chosen language, and the typical environment
applications are developed in. The latter is partly a matter of taste: while C++
offers object orientation, compilation, and type-checking, TkConcept provides an
interpreter that shortens the edit-run-edit cycle. For both languages a rich set
of toolkits or extensions exists which make application development a lot easier.
Because TkConcept is divided in a C coded extension and the interpreted user
level it provides a somewhat more comfortable environment for unexperienced
users.

The predecessor of all concept analysis tools is conimp [1] which has been
developed at Wille’s group. It is a many featured, interactive, and terminal-
oriented analysis tool with fixed input and output formats. Its analysis tech-
niques go much beyond those provided by Toscana or TkConcept, but it lacks a
visual presentation of the results and customization. Intended for interactive use
it is difficult to be used as a building block in concept analysis applications. Be-
cause of this we developed a batch analysis tool for basic concept analysis. The
inflexibility of input and output formats and the difficulties to use batch tools
as parts of interactive applications led to the development of TkConcept—as
mentioned previously.

5 Conclusions

Concept analysis has been found a valuable data analysis technique and finds its
way into more and more domain specific applications. Nevertheless, support for
building concept analysis based applications is lacking. Most concept analysis
tools can not be incorporated into new applications and, thus, force the designer
to re-implement the concept analysis techniques each time. TkConcept is a do-
main independent framework that provides ready to use abstractions for concept
analysis. It helps the designer to focus on his or her domain instead of analysis
techniques. Implemented as an extension of Tcl/Tk, it extends a free, portable,
and popular system that already provides solutions to many common applica-
tion tasks. The user of the framework takes advantage of the fact that Tcl is an
interpreter but extensions as TkConcept are implemented in compiled C code.
First experiences show that the gained flexibility indeed leads to noticeable pro-
ductivity improvements. There are surely other ways beside TkConcept to create
a framework; however, we believe that providing a framework for concept based
applications is a step towards the right direction.

TkConcept, its documentation, and the demo applications are distributed via
the world wide web: http://www.cs.tu-bs.de/softech/tkconcept.

Acknoledgements. Franz-Josef Grosch and Bernd Fischer provided valu-
able comments on earlier versions of this paper.

References

1. Peter Burmeister. Programm zur Formalen Begriffsanalyse einwertiger Kontexte.
Software, TH Darmstadt, Fachbereich Mathematik, Darmstadt, Germany, 1987.

2. Petra Funk, Anke Lewien, and Gregor Snelting. Algorithms for concept lattice de-
composition. Int. Conf. on Conceptual Knowledge Processing, Darmstadt, Febru-
ary 1996. Submitted.

3. B. Ganter, R. Wille, and K. E. Wolff. Beiträge zur Begriffsanalyse. BI Wis-
senschaftsverlag, Mannheim, Germany, 1986.

4. Bernhard Ganter. Lattice theory and formal concept analysis. FB4-Preprint AL-
2-1994, Technische Universität Dresden, Dresden, Germany, 1994.

5. Robert Godin, Rokia Missaoui, and Alain April. Experimental comparison of
navigation in a galois lattice with conventional information rertrieval methods.
Int. J. Man-Machine Studies, 38:747–767, 1993.

6. Maren Krone and Gregor Snelting. On the inference of configuration structures
from source code. In Proc. 16th International Conference on Software Engineering,
pages 49–57, Italy, May 1994. IEEE Comp. Soc. Press.

7. Christian Lindig. Concept-based component retrieval. In Jana Köhler, Fausto
Giunchiglia, Cordell Green, and Christoph Walther, editors, Working Notes of

the IJCAI-95 Workshop: Formal Approaches to the Reuse of Plans, Proofs, and

Programs, pages 21–25, Montreál, August 1995.
8. Christian Lindig. Komponentensuche mit Begriffen. In Softwaretechnik ’95,

Braunschweig, October 1995.
9. J. K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, Reading, MA, 4th

edition, 1994.
10. John Ousterhout. Tcl: An embeddable command language. In Proceedings of the

Winter 1990 USENIX Conference, 1990. see also http://www.sunlabs.com:80/-

research/tcl.
11. Herrmann Strack. Sicherheitsmodellierung und Zugriffskontrolle in verteilten Sys-

temen. Dissertation, Universität Karlsruhe, Fakultät für Informatik, Germany,
1996. To appear.

12. Jos van Eijndhoven. Graphplace – a graph layouter. Software, Eindhoven Uni-
versity of Technology, 5600 MB Eindhoven, The Netherlands, August 1994. dis-
tributed by anon ftp from ftp.ele.tue.nl.

13. Frank Vogt. The formal concept analysis library. Software library, TH Darmstadt
and Ernst Schröder Zentrum, Darmstadt, Germany, 1995.

14. Frank Vogt and Rudolf Wille. Toscana – a graphical tool for analyzing and ex-
ploring data. In Roberto Tamassia and Ioannis. G. Tollis, editors, Graph Drawing,
number 894 in LNCS, pages 226–233, Princeton, USA, October 1994. Springer-
Verlag.

15. Rudolf Wille. Restructuring lattice theory: An approach based on hierarchies of
concepts. In I. Rival, editor, Ordered Sets, pages 445–470. Reidel, 1982.

This article was processed using the LATEX macro package with LLNCS style

