
Custom Calling Conventions in a Portable Assembly Language

Norman Ramsey Christian Lindig

Division of Engineering and Applied Sciences

Harvard University

nr@eecs.harvard.edu lindig@eecs.harvard.edu

Abstract

Calling conventions are so difficult to implement and main-
tain that people rarely experiment with alternatives. The
primary sources of difficulty appear to be parameter passing
and stack-frame layout. To implement parameter passing,
we use the automata developed by Bailey and Davidson,
but we have developed a new specification language that
is implementable directly in the compiler. To implement
stack-frame layout, we have developed an applicative, com-
posable abstraction that cleanly decouples the layout of the
stack frame from the order in which compiler phases exe-
cute. We hope these abstractions will so simplify the im-
plementation problem that compiler writers will routinely
customize calling conventions to improve performance.

1 Introduction

The C calling convention on your favorite platform may
have been carefully crafted to make effective use of regis-
ters while also supporting procedures with a variable num-
ber of arguments. Such a convention can be hard to im-
plement, and even a mature compiler can harbor lingering
bugs (Bailey and Davidson 1996). If a compiler supports
multiple targets, tail calls, and calls to foreign functions,
the effort is compounded, because one calling convention is
not enough. Such a compiler is required for C--.

C-- is a portable assembly language that is intended
to be generated by a language-dependent front end and
compiled to efficient machine code (Peyton Jones, Oliva,
and Nordin 1997; Peyton Jones, Ramsey, and Reig 1999).
Our hope is to make C-- as easy to generate as C, while
making the resulting code perform almost as well as code
from a custom code generator. To this end, C-- must be
expressive enough so that the author of a front end can
control cost tradeoffs. A previous paper discusses mecha-
nisms an author can use to control tradeoffs in exception
dispatch (Ramsey and Peyton Jones 2000); this paper de-
scribes mechanisms used to control cost tradeoffs in calling
conventions.

One of the cost tradeoffs in a calling convention con-
cerns use of registers. For example, how many registers
are used as callee-saves, caller-saves, and parameter regis-
ters can have a significant effect on performance (Davidson
and Whalley 1991; Appel and Shao 1992). As an example
where use of registers matters, we present code that might
be used to create a cons cell in a functional language. In
this example, hp is a “heap pointer” that points to space
that can be used for allocation, and hplim marks the end of

that space. We might form a cons cell containing a and d
using this C-- code:

if (hp + 12 > hplim) { // if no space is left
gc(); // garbage collect

}
bits32[hp] = TAG_FOR_CONS_CELL;
bits32[hp+4] = a; // store the car
bits32[hp+8] = d; // store the cdr
p = hp + 4; // p is the new object
hp = hp + 12; // set hp to next free word

The code checks to see if there is enough space, and if not, it
calls the garbage collector. Allocation and initialization are
done inline; the bits32[. . . ] notation is C-- for a reference
to memory.

What sort of calling convention should be used to call
gc()? Statically, call sites to gc() are likely to be common
(there is at least one for every extended basic block that
allocates), but actual dynamic calls are likely to be rare
(almost every allocation succeeds without garbage collec-
tion). We therefore want gc to have as many callee-saves
registers as possible—this convention would minimize code
size at each call site and thus minimize total code size. If we
were to save some registers unnecessarily at a garbage col-
lection, the dynamic cost would be dominated by the cost
of the collection. To maximize the number of callee-saves
registers, we can’t simply tune an existing convention to
change the number of registers saved across calls—we must
also be sure that no register is reserved to hold a parameter
or result, because an unused parameter register is typically
treated as caller-saves (Chow 1988). The mechanisms de-
scribed in this paper can be used to define an appropriate
convention, which can be called using something like

call "max-callee-save" gc();

in place of the call above.
The contribution of this paper is a set of abstractions

that a compiler can use to describe calling conventions.

• We have developed new abstractions for specifying pa-
rameter passing (Section 3). Our specifications decouple
parameter passing from other parts of the calling conven-
tion, are no more complex than those used in previous
work (Bailey and Davidson 1995), and eliminate the need
for a program generator apart from the compiler.

• We have developed a declarative technique for specifying
the layout of a procedure’s activation record or frame
(Section 5). This technique makes it easy to decouple
frame layout from the order in which different phases
of the compiler execute, and it makes a frame-layout
specification correspond closely to the sort of picture of

1



frame layout one finds in a typical architecture manual
or calling-convention manual.

What if you don’t care about customizing calling con-
ventions? Our abstractions are simple enough that they
should be useful even for implementing one calling conven-
tion on one platform, and they can describe existing, stan-
dard calling conventions cleanly. Although we have not yet
performed experiments with custom calling conventions, we
have used our abstractions to implement standard C calling
conventions on the Alpha, Intel x86, and MIPS platforms.
Implementations range from 90–130 lines of code each, di-
vided about evenly among parameter passing, frame lay-
out, and basic infrastructure such as importing modules
and naming registers. We have tested these implementa-
tions using Bailey and Davidson’s (1996) techniques, which
our abstractions support. We have also used the same tech-
niques to confirm that our compiler interoperates with the
native C compiler, at least for procedure calls that can be
expressed in the type systems of both compilers.

2 Background

Before presenting automata and frame layout, we provide
some background on calling conventions and on C--.

Calling conventions

A calling convention is a contract among four parties: a call-
ing procedure (the caller), a called procedure (the callee),
a run-time system, and an operating system. All four par-
ties must agree on how space will be allocated from the
stack and how that space will be used: a procedure needs
stack space for saved registers and private data, an operat-
ing system needs stack space to hold machine state (“signal
context”) when an interrupt occurs, and a run-time system
needs to walk a stack to inspect and modify the state of a
suspended computation. In addition to sharing the stack
with the other two parties, a caller and callee must agree on
how to pass parameters and results. This paper focuses on
caller and callee; we consider run-time system or operating
system only when they impose constraints on a procedure.

The most significant previous work is by Bailey and
Davidson (1995, 1996), who first used automata to de-
scribe parameter passing, showed how to use such automata
to test compilers (even compilers built without regard to
automata), and presented a specification language, CCL,
from which automata (and other information) could be de-
rived. We found automata and automaton-based testing
extremely helpful. CCL, however, did not meet our needs.
It is fairly complex and is used before compilation to gen-
erate parts of the compiler. We prefer something simple
enough to embed in the compiler and run at compilation
time, so that the author of a front end can experiment with
a new calling convention without having to rebuild the C--
compiler.

Another difficulty with CCL is that much of stack-
frame layout lies outside its scope. For example, in
the specification of the M88100 calling convention, the
compiler writer must know the meaning of the spe-
cial constants SPILL SIZE, LOCALS SIZE, NVSIZE,
and ARG BLOCK SIZE, must supply values for three
of the four, and must know that the frame size is
round up(SPILL SIZE + LOCALS SIZE + NVSIZE +
ARG BLOCK SIZE, 8). Rather than adopt CCL, we use
Bailey and Davidson’s automata and testing methods, but

we provide a new specification language and a new way of
implementing frame layout.

C-- and Quick C--

C-- is intended as a target for a high-level–language com-
piler: the front end. C-- encapsulates a code generator—
technology that is well understood but difficult to imple-
ment. The primary goal of C-- is to enable a code gener-
ator to be reused. Effective reuse requires that the author
of a front end be able to control cost tradeoffs.

C-- comprises a language and a run-time interface; the
language is used by the front end to request generated code,
and the run-time interface is used by the front end’s run-
time system to support such language features as exception
dispatch and garbage collection. Only the language is rele-
vant to this paper.

The C-- language is designed around a register-transfer
model of computation. This model is a refinement (Ramsey
and Davidson 1998) of a model first used for compilation
by Davidson and Fraser (1980); a similar model is used in
the popular compiler gcc. C-- also provides a form of pro-
cedure, which may accept multiple parameters and return
multiple results. Although there is no limit to the number
of parameters or results any one procedure may accept or
return, this number is fixed at compile time; C-- does not
support varargs as it is understood in C.1 C-- provides con-
trol flow between procedures using a construct called cut
to, which is a bit like C’s longjmp but can pass multiple
parameters (Ramsey and Peyton Jones 2000).

C-- has just enough of a type system to help a compiler
put values in machine registers: the type of a value is its
width in bits. Some machines have more than one kind of
register, and a good C-- compiler should put a value in the
kind of register that best fits the way the value is used. For
example, an intermediate result in a floating-point compu-
tation should be put in a floating-point register.

When a value is passed to a separately compiled proce-
dure, the C-- compiler can’t see how it is used, so the com-
piler needs help deciding what kind of register should hold
it. We provide such help by using a hint on every actual and
formal parameter in a C-- program. The hint enables the
caller and callee not only to agree on what register should
be used to pass the value but also to agree on an appro-
priate kind of register. The hints at a call site must match
the hints at the declaration of the procedure called. The
set of meaningful hints depends on what kinds of registers
are available and is therefore machine-dependent. On the
platforms our compiler supports, we use three hints: the
"float" hint, which identifies a floating-point number; the
"address" hint, which identifies a pointer; and the empty
hint, which identifies an integer or other non-pointer data.
For purposes of a calling convention, the type of a param-
eter is its width together with its hint.

Our work takes place in the context of Quick C--, a
new compiler for C--. Quick C-- is modeled after vpo, the
Very Portable Optimizer (Benitez and Davidson 1988), with
one small difference. Vpo requires a front end to include a
“code expander” that translates the front end’s interme-
diate form into a register-transfer computation in which
each register-level assignment can be expressed as a single
instruction on the target machine. The Quick C-- com-

1A planned extension to C-- will support a variable number
of arguments, but using a mechanism other than ordinary pa-
rameters. Unlike in C, an ordinary call site will not interoperate
with a variadic procedure.

2



piler establishes the single-instruction property on its own,
so a front end can simply translate its intermediate form
into an arbitrary register-level computation without regard
to the target instruction set. There is also a minor differ-
ence in implementations. Vpo is implemented entirely in C,
but Quick C-- is implemented in two languages: Objective
Caml (Leroy et al. 2001) is the main implementation lan-
guage of the compiler, but the compiler and optimizer are
configured using the embedded language Lua (Ierusalim-
schy, De Figueiredo, and Celes Filho 1996), and part of each
calling convention is specified using Lua. Both languages
appear in examples in this paper. Finally, vpo is a mature
tool that produces excellent code. Quick C-- is immature
and produces näıve code, but it does run hello world and
the kinds of tests described by Bailey and Davidson (1996).
Quick C--may be downloaded from www.cminusminus.org.

3 Passing values between procedures

The contract embodied by a calling convention must say
where to put the value of each parameter or result when
control is passed from one procedure to another. In a C call-
ing convention, a parameter is typically passed either in a
register or in memory, but a large parameter may be split,
passing part in register and part in memory, and some con-
ventions may require that two copies of a parameter be
passed: one in a register and one in memory. We therefore
represent a location as an abstract object that supports read
and write operations.

As do Bailey and Davidson (1995), we assume that all but
finitely many parameters must be passed in contiguous, se-
quentially allocated locations in memory. Intuitively, these
parameters are the parameters that don’t fit in registers.
We call the area from which they are allocated the over-
flow block. The assumption may seem restrictive, but it is
satisfied by all calling conventions we know of, and it could
easily be relaxed to accommodate multiple overflow blocks.

We also assume that it is possible to place parameters in
locations by working from left to right. More formally, we
assume that the location in which parameter k is passed de-
pends only on the types (including sizes) of parameters ≤ k.
This assumption is not required by our translator or in-
herent in the nature of procedure calls, but it is inherent
in the C calling convention because of variadic procedures
(varargs). In a variadic C procedure, it must be possible to
extract parameters one at a time using the va arg macro.
A convention that supports varargs must therefore work
left to right. Even for other conventions, however, working
left to right is convenient for both specification and imple-
mentation, and a more general model (in which the type
of a later parameter can affect the placement of an earlier
parameter) appears to offer no particular advantages.

Under these assumptions, we can follow Bailey and
Davidson and use an automaton to allocate a location for
each parameter. Each allocation request presents a param-
eter’s type to the automaton, and we present the types left
to right. An automaton includes a finite-state control plus
an overflow block. The overflow block has infinitely many
possible states, because its state includes the number of
bytes allocated. The overflow block is the only place from
which one can allocate arbitrarily many locations.

We use automata not only for allocation but also to gen-
erate a test suite (Bailey and Davidson 1996).

Client’s view of an automaton

We represent an automaton as a value of type Automaton.t,
which is a mutable abstraction. An Automaton.t supports
two operations: allocate and freeze. The allocate op-
eration takes a width and hint (which amount to a type
in C--) and returns an abstract location. The freeze oper-
ation is called after all parameters are allocated. It returns
the overflow block, the set of registers disbursed by previous
calls to allocate, and information about memory locations
used and the internal state of the overflow block. The over-
flow block is used in laying out the stack (Section 5), and
the set of registers is used in liveness analysis. The other
information is not used in the compiler but is used to im-
plement Bailey and Davidson’s testing technique.

A client of an automaton, either at a call site or in a
procedure’s prolog, starts with a list of parameter types and
gets back a list of locations and an overflow block. Such a
client presents the types to allocate one at a time, then
calls freeze.

How to specify an automaton

We could specify any automaton by giving its nodes and
edges. Such a specification would be both hard to write
and hard to read, however: Bailey and Davidson (1996)
report 9 nodes and 90 edges for a simple convention like
the SPARC convention; the more complex MIPS conven-
tion takes 70 nodes and 772 edges. An alternative is to
invent an abstract specification language such as CCL and
to write a program generator that analyzes a specification
and generates an automaton. CCL uses a few very powerful
operators to talk about parameter passing, and the trans-
lation from CCL to an automaton is not obvious. We steer
a middle course: we use abstraction, but our abstractions
are simple constructors that build automata directly. Our
specifications seem slightly larger than CCL specifications
but still relatively readable. One benefit is that we can
implement our constructors directly in the compiler, which
obviates the need for a program generator and makes it
possible to specify new conventions at compile time. Build-
ing the implementation into the compiler also means that if
you must write special-purpose code for an unusual calling
convention, you have all the power of your chosen imple-
mentation language. Whatever that language, it should be
easy to re-implement our constructors in it.

Our idea is to build an automaton in stages. Each stage
may satisfy an allocation request or pass it on to a suc-
ceeding stage. It is also possible for a stage to satisfy part
of a request, e.g., when splitting a parameter between reg-
isters and memory. Each stage implements the allocate
and freeze operations, but in a slightly different form than
that used by a client.

• An internal allocate request includes not only the width
and hint of a parameter but also the alignment needed
for the parameter if it should be allocated to memory.

• An internal freeze request accumulates all the regis-
ters and memory locations used by preceding stages and
passes this information to succeeding stages.

Because most automata include an overflow block, we begin
with the overflow stage.

Overflow An overflow stage satisfies every request by al-
locating from the overflow block. Because it satisfies every
request, it never passes a request to its successor, and there-
fore it is useless to give it a successor. To create an overflow

3



stage, we supply the direction in which the overflow block
should grow and the maximum alignment of the overflow
block supported by the calling convention.

〈constructors for automaton stages〉≡
val overflow :
growth:Memalloc.growth -> max_alignment:int ->
stage

An automaton without an overflow stage can satisfy only
finitely many allocation requests and so can support passing
only finitely many values.

Selection and adjustment of width We define two
width-related stages that satisfy no requests themselves,
but only check or change requests before passing the re-
quests to their successors. The widths stage restricts the
automaton to satisfy only requests for one of an enumerated
list of widths. It is useful for detecting internal errors in the
compiler, e.g., passing a 16-bit value when the convention
supports only wider values. When it receives a request, the
stage width ws checks to see if the requested width is in
the list ws. If so, it passes the request to its successor; if
not, it halts the compiler with an error message.

〈constructors for automaton stages〉+≡
val widths : width list -> stage

Instead of halting with an error message, we can alter an
allocation request to ask for a wider location. For example,
we might embed a 16-bit value inside a 32-bit location. The
widen f stage alters a request for a width w so it has a width
f w, which must be at least as large as w.

〈constructors for automaton stages〉+≡
val widen : (width -> width) -> stage

The widen f stage requests a location l of width f w from
its successor. If f w is larger than w, the widen stage builds
a new, narrower location n that it returns to its client.
A read from n is implemented by reading the wide value
in l and narrowing the value read. A write to n is imple-
mented by widening the value written and writing it into l.
Widening and narrowing are done using either integer or
floating-point operations, depending on the hint in the orig-
inal allocation request.

Adjustment of alignment As noted above, a value that
is allocated in memory needs an alignment. The alignment
is 1 by default, but if the stage align to f is used, the
alignment is adjusted to f w, where w is the width of the
request. The adjusted request is then passed to the succes-
sor of align to f.

〈constructors for automaton stages〉+≡
val align_to : (width -> int) -> stage

It is possible that the functions used to build align to and
width stages should be generalized to use a request’s hint,
not just its width, to make their adjustments. We have not
yet needed such generality.

Allocation of registers The most interesting stages are
those that place arguments in registers. We have identified
two policies that are used by common calling conventions:
“the first n bits of arguments go in the first n bits of regis-
ters” and “the first n arguments go in the first n registers.”
We use separate stages to count bits or arguments and to
allocate registers. A counter and allocator normally share

a mutable cell containing an integer; such a cell has type
int ref.

〈constructors for automaton stages〉+≡
val bitcounter : int ref -> stage
val argcounter : int ref -> stage

The stage bitcounter n doesn’t allocate; given a request,
it increments n by the width of the request and then passes
the request to its successor. Similarly, argcounter n incre-
ments n by one and passes the request to its successor.

The stage regs by bits n rs uses the bit counter n to
implement the “n bits of arguments to n bits of registers”
policy. It allocates registers from list rs.

〈constructors for automaton stages〉+≡
val regs_by_bits : int ref -> Register.t list -> stage

Given a request, regs by bits n rs subtracts the width of
the request from n to compute the number of bits already
allocated. It skips as many registers from rs as are needed
to account for bits already allocated, then uses the first
remaining register to satisfy the allocation request. If no
registers remain, it passes the request to the next stage.

What if the width of a request is different from the width
of the first available register? If the request is too narrow
for the first register, the stage could halt the compiler with
a bug report (semantic checking failed to detect an unsup-
ported width) or could widen the request. Widening the re-
quest is not the same as inserting a preceding widen stage;
for example, to pass a 64-bit floating-point value on the
Pentium, we want to use an 80-bit floating-point register
if one is available, but request a 64-bit memory slot from
the successor stage if no register is available. If the stage
widens a request, it increases n to indicate that more bits
were allocated than were actually requested.

If a request is too wide for the first register, it is rea-
sonable to see if a combination of registers can satisfy the
request. For example, a 64-bit request might be satisfied
by splitting it into two 32-bit requests and using two 32-
bit registers. Splitting requires a byte order to tell whether
the first register carries the most significant or the least
significant bits of the request.

It is also reasonable, if a request is large enough to ex-
haust registers, to use registers to satisfy as much of the
request as possible, then request the remaining space from
the next stage. For example, a 64-bit request might be
satisfied using one 32-bit register and a 32-bit area in the
overflow block.

The stage regs by args n rs uses the arg counter n to
implement the “n arguments to n registers” strategy.

〈constructors for automaton stages〉+≡
val regs_by_args : int ref -> Register.t list -> stage

Here, it still seems sensible to widen a request that is too
narrow, but it does not appear sensible to split a request
across multiple registers.

It is sometimes possible to make a counter implicit. For
the case in which bitcounter n is immediately followed by
regs by bits n rs, we provide the shorthand useregs rs.

〈constructors for automaton stages〉+≡
val useregs : Register.t list -> stage

Choice among stages Many calling conventions pass
different types of parameters in different kinds of registers.
For example, according to the 32-bit MIPS calling conven-
tion for C, the first parameter is passed in integer register 4,
unless it is a floating-point parameter, in which case it is
passed in the floating-point register pair 12–13. We im-
plement such a rule by providing a “choice” stage, which

4



uses the hint and width of an allocation request to decide
which alternative stage should satisfy the request. We cre-
ate a choice stage by passing the choice function a list of
(predicate, stage) pairs.

〈constructors for automaton stages〉+≡
val choice :
((width -> hint -> bool) * stage) list -> stage

A choice stage works a bit like a Lisp cond; when a request
reaches the stage, it evaluates the predicates one at a time,
and it behaves as the first stage whose predicate is satisfied.
For convenience in creating predicates, we provide functions
is width, is hint, and is any.

Arbitrary state transition Sometimes the location of
a parameter may depend on the width or hint of a previ-
ous parameter. On the MIPS, for example, if the second
parameter is a floating-point parameter, its placement de-
pends on the type of the first parameter. We solve this
problem by introducing history: the automaton makes a
permanent state transition on the relevant parameter.

〈constructors for automaton stages〉+≡
val first_choice :
((width -> hint -> bool) * stage) list -> stage

The stage first choice l is like choice l, except that the
choice is made once, at the time of the first request that
reaches the stage, instead of each time a request reaches
the stage. After the first request, the first choice l stage
behaves as the chosen stage from then on. An example
appears in Appendix B.

Having first choice makes our system general: because
stages can be chained and because parameter-passing au-
tomata do not contain cycles, we can define any needed
node-edge structure using first choice and useregs.

Example automata

We present automata used to implement standard C calling
conventions. We build each automaton by composing stages
of type stage. To connect stages, we use the composition
operator *>; this infix associative operator takes two stages
and produces a stage. When all stages have been combined
with *>, we build a full automaton using Automaton.at
start stages, where start is the starting address of the
overflow block and stages are the combined stages. In our
examples, we show only the combined stages.

On the Pentium, arguments are passed on the stack, in
the overflow block, which is aligned on a 4-byte boundary.
Each request is rounded up to a multiple of 32 bits.

〈x86 automata〉≡
let c_arguments () =
widen (Aux.round_up_to ~multiple_of:32) *>
overflow ~growth:Memalloc.Up ~max_alignment:4

The ~ is Objective Caml syntax that names an actual pa-
rameter in a function call.

The Pentium’s return convention requires a choice oper-
ation: a floating-point result is returned in floating-point
register 0 (written f 0), but an integer result is returned in
integer register EAX. There is no overflow block.

〈x86 automata〉+≡
let c_results () =
choice
[ is_hint "float",

widen (Aux.round_up_to ~multiple_of:80) *>
widths [80] *> useregs [f 0];

is_any,

widen (Aux.round_up_to ~multiple_of:32) *>
widths [32] *> useregs [eax]

]

On the Alpha, the first six words’ worth of parameters go
in registers, and the rest go in the overflow block. Floating-
point parameters go in floating point registers 16–21; other
parameters go in integer registers 16–21. Choice of register
is by offset of the relevant parameter; because both inte-
ger and floating registers use the same offset, we need an
explicit counter.

〈alpha automata〉≡
let c_arguments () =
let ctr = ref 0 in (* allocate a fresh counter *)
bitcounter ctr *>
choice
[ is_hint "float",

widths [64] *>
regs_by_bits ctr
[f 16; f 17; f 18; f 19; f 20; f 21];

is_any,
widen (Aux.round_up_to ~multiple_of:64) *>
regs_by_bits ctr
[r 16; r 17; r 18; r 19; r 20; r 21]

] *>
overflow ~growth:Memalloc.Up ~max_alignment:16

This convention, like many C conventions, leaves some reg-
isters unused. For example, suppose a procedure takes two
floating-point parameters and an integer parameter, each
64 bits wide. When the first request comes in, with hint
float and width 64, the bitcounter stage adds 64 to ctr.
The choice stage directs the request its first alternative,
which verifies the request is 64 bits wide and passes it to
the first regs by bits stage. This stage subtracts the cur-
rent width from ctr to determine that 0 bits have been
allocated so far, so it drops nothing from its list of regis-
ters and returns floating-point register f 16. The second
parameter, also a floating-point parameter, takes the same
path, but the regs by bits stage drops f 16 and returns
f 17. The third parameter is an integer parameter, with an
empty hint, so it takes the second choice. The widen stage
has no effect because the 64-bit request is already a multi-
ple of 64 bits, and the second regs by bits stage, still using
the same ctr, determines that 128 bits have been allocated
already, so it drops integer registers 16 and 17, which are
not used, and it returns integer register r 18.

We have also implemented the standard C convention
for the MIPS, which uses regs by args for floating-point
parameters and regs by bits for integer parameters. The
MIPS argument automaton appears in Appendix B.

4 Frame-layout folklore

A stack frame includes not only overflow parameters but
also user variables, saved registers, and other data. Lo-
cations must be allocated and laid out in a way that is
consistent with the calling convention. There are simple
textbook techniques that work well for C, but these tech-
niques don’t support proper tail calls. If proper tail calls are
supported, the stack pointer moves, and care is required to
avoid dedicating two registers to point to the stack frame.
We have found surprisingly little discussion of these issues
in the literature. This section sketches the problems and
our solutions.

5



Managing overflow blocks

To describe a stack, we use terminology that is independent
of the direction of stack growth. If f calls g, f ’s frame is
next to g’s frame on the stack, but f ’s frame is older. We
therefore refer to the two ends of the stack as the old and
young ends. The young end is the end at which the stack
grows and shrinks. We also refer to the old or young end
of an individual frame.

When a procedure f calls another procedure g, pass-
ing parameters, they share the space that holds the over-
flow block. This space is allocated and initialized by the
caller, f , but read by the callee, g. The shared space ap-
pears at the young end of f ’s frame and the old end of
g’s frame. The caller, f , allocates this space, but who deal-
locates it? One possibility is for g to deallocate this space,
perhaps after using it for private purposes. The other pos-
sibility is for g to let f deallocate or reuse the space. The
choice depends on the calling convention.

Most conventions for C leave it to f to deallocate this
space, because a caller can easily reuse the same space to
pass outgoing overflow parameters at multiple call sites.
(A space used in this way is sometimes called an argument-
build area.) The caller sets the stack pointer once, on entry,
and does not adjust it afterward. Unfortunately, caller-
deallocates is incompatible with proper tail calls.

A proper tail call is a bit like a return and call in one. If
f calls g and g properly tail-calls h, g’s frame disappears,
and when h returns it returns directly to f . A proper tail
call recovers g’s stack space before passing control to h, so
an arbitrarily long sequence of proper tail calls uses only
constant stack space (Clinger 1998).

If f calls g and g properly tail-calls h, h must deallocate
any overflow parameters it receives from g. To see why, sup-
pose that f passes only a few overflow parameters to g, but
g passes many overflow parameters to h. When h returns
to f , the best f can do is to deallocate the small overflow
area it passed to g, not the large area that g passed to h.
In other words, if a caller makes a tail call, it is no longer
around to deallocate anything, so the job of deallocation
must fall to the callee. This means when control returns
to f , the stack pointer has moved. Probst (2001) discusses
this issue at length and presents a nonstandard convention
for C that supports both tail calls and varargs functions.

Even when the stack pointer moves, we find it convenient
to have the stack pointer return to a single location between
calls. In Quick C--, we call this location a stable location.

The problem of overflow parameters has a dual: overflow
results. Overflow results occur when a procedure returns
more values than can fit in registers. (Unlike C, C-- per-
mits a procedure to return arbitrarily many results in reg-
isters.) Like incoming overflow parameters, outgoing over-
flow results appear at the old end of a stack frame. The
overflow-result space must be deallocated by the caller, but
it may be allocated either by caller or callee. The choice
appears to be independent of tail calls.

Addressing and allocating slots

We call a location in the stack frame a slot. How can we
refer to a slot? If the stack pointer moves, the textbook
solution is to express a slot’s address as an offset from a
frame pointer. The frame pointer is an extra register that
provides a fixed base through which to address slots.

Every compiler must have a way to allocate a slot and
provide its address. A typical strategy, which is used in
the lcc compiler (Fraser and Hanson 1995), is to allocate

and deallocate slots last in, first out. The compiler uses the
order of allocation and deallocation requests to signal both
the layout of slots in the frame and the lifetime of each slot.
Because deallocation is last in, first out, lifetimes must nest,
and the compiler must be structured to make the order of
requests match the lifetimes. This requirement is not too
onerous for a simple C compiler: for example, the lifetimes
of variables in an inner compound statement (i.e., declared
within {· · ·}) nest within the lifetimes of other variables.

Last-in, first-out allocation is easy to implement using
two pointers: the cursor tracks the location of the next free
slot, and the high-water mark tracks the maximum number
of slots ever allocated at one time. C conventions typically
require the cursor to start at the old end of the frame, near
where the frame pointer points, and move toward the young
end, where the stack pointer points.

The main drawback of last-in, first-out slot allocation is
that when the calling convention constrains the order in
which parts of the stack frame must be laid out, those con-
straints also affect the order in which different parts of the
compiler may execute. Again, these constraints are not too
onerous for a simple C compiler, because C calling conven-
tions are designed with this compilation strategy in mind.
Another drawback is that the frame-layout code can be dif-
ficult to understand and to change, and it is not obvious
how to check whether it is consistent with the pictures of
frame layout one sees in manuals. These drawbacks be-
come problematic when one wants to support many calling
conventions in one compiler. In Section 5, we present an
alternative that decouples the order of execution from the
layout of the stack frame.

Eliminating the frame pointer

Using two registers to point to one frame is costly; most
serious compilers use a virtual frame pointer instead. A vir-
tual frame pointer supports last-in, first-out allocation: the
cursor starts at the virtual frame pointer and moves toward
the young end of the fame.

If the stack pointer does not move, the virtual frame
pointer is simply the stack pointer plus the frame size. Be-
cause the frame size is not known until frame layout is com-
plete, it is represented as a symbolic constant. We call such
a constant a late compile-time constant. When the stack
pointer moves, we need to define the virtual frame pointer
differently. In Quick C--, the virtual frame pointer is the
value of the stack pointer at procedure entry. This defini-
tion allows the stack pointer to move.

Because the virtual frame pointer is not a real register,
we cannot emit code that refers to it. If the virtual frame
pointer is VFP and the stack pointer is SP , we can always
replace VFP by SP + k for some k, but the k may be
different from instruction to instruction. Computing k is a
simple forward dataflow problem. On entry, k is zero, and
k changes only when the stack pointer is modified. To solve
the dataflow problem, we rely on the following invariants:

• Every addressing expression that refers to a stack slot is
written VFP + n, where n is a (possibly late) compile-
time constant. The stack pointer is never used in an
addressing expression.

• The virtual frame pointer is immutable, so VFP never
appears in an lvalue context.

• The stack pointer is modified in only two ways: abso-
lute and relative. An absolute modification has the form
SP ← VFP + k; a relative modification has the form
SP ← SP + k.

6



Given these invariants, it is easy to write code that, in one
pass, computes k such that VFP = SP + k and replaces
VFP by SP + k. The same k should be computed on each
edge into a join point; if not, there is a bug in the compiler.

The virtual frame pointer enables us to refer to each slot
by an expression of the form VFP +n. To help compute n,
we introduce the block abstraction.

5 Frame layout by block composition

We want to make it easy for different parts of the compiler
to allocate slots in any order, independent of frame layout.
For each procedure, we create a set of allocation areas, each
of which will hold a collection of related slots. For example,
an area may hold spilled registers, user data stored on the
stack, exception-handling information, or any other data
that is private to the back end of the compiler. Our compiler
uses at least one area for each of these categories. Each
area is implemented using a simple cursor; no slot is ever
deallocated. Any part of the compiler can allocate a slot
in any area at any time, and the allocator returns a slot
address that is an expression involving a late compile-time
constant and the virtual frame pointer.

When slot allocation is complete, we convert each area
into a block. A block is simply a contiguous region of mem-
ory that holds a collection of slots. Our Bailey/Davidson
automata also produce blocks, which hold overflow param-
eters or results.

Once we have a procedure’s blocks, we compose them to
form the stack frame. At this point, the location of each
block is known, and we can compute the exact offset of each
slot. To explain how blocks are composed, we present two
views of blocks: the external view, which is used by parts
of the compiler that create blocks, and the internal view,
which is used to lay out the stack frame.

In the external view, each block has a size, an alignment,
and a base address. The size and alignment are integer
values, but the base address is an expression, not a value;
it typically has the form VFP+n, where n is a late compile-
time constant.2

Blocks may be composed by concatenation or overlap-
ping. If two blocks are concatenated, they occupy contigu-
ous but distinct locations in the stack frame, and they may
be live at the same time. It is typical, for example, to con-
catenate blocks for spilled registers and for user data stored
on the stack. If two blocks are overlapped, they share lo-
cations in the stack frame, and they must never be live at
the same time. It is typical, for example, to overlap blocks
for outgoing overflow parameters at different call sites.

The result of composing two blocks is itself a block;
the rules are straightforward. For example, if two blocks
bhi and blo are concatenated, the resulting block has the
address of blo , an alignment that is the least common mul-
tiple of the alignments of bhi and blo , and a size that is the
sum of the sizes of bhi and blo , or possibly larger if padding is
needed to satisfy requirements for alignment. Equally sim-
ple rules apply to overlapping, which comes in two forms:

2A block may also be used to represent exception-handling
information. In the frame where the exception is handled, this is
an ordinary block that is part of the stack frame, and its address
is relative to the virtual frame pointer. In the frame where the
exception is raised, however, the block is part not of the current
frame but of the faraway frame where the handler is. In this case,
the address of the block is the value that points to the handler,
and this address is not relative to the virtual frame pointer.

line up either the high ends or the low ends of the over-
lapped blocks. Complete rules are given in Appendix A.

In the internal view of a block, everything is as in the
external view, plus each block is augmented with a set of
constraints. These constraints, which take the form of equa-
tions, relate addresses as prescribed by any overlapping or
concatenation operations that have been used to form the
block. In the example above, if we concatenate bhi and blo ,
the resulting block includes the constraint address(bhi) =
address(blo) + round up(size(blo), alignment(bhi)).

To compose blocks into a stack frame, we need to know
what blocks we are working with. For each procedure,
Quick C-- creates these blocks:

• List oldblocks is a list of blocks that occur at the old
end of the stack frame. These are typically incoming
overflow parameters and outgoing overflow results.

• List youngblocks is a list of blocks that occur at the
young end of the stack frame. These are typically outgo-
ing overflow parameters and incoming overflow results.

• Block vfp is an empty block whose address is the vir-
tual frame pointer, and block stable sp is an empty
block whose address is the “stable” location of the stack
pointer.

• Block stackdata contains user data that is allocated on
the stack. Blocks continuations and spills hold the
compiler’s private data: one for the exception mechanism
and one for the register allocator.

To compose these blocks, we use Lua, which is a simple im-
perative language with roughly Pascal-like syntax (Ierusal-
imschy, De Figueiredo, and Celes Filho 1996). The Lua
versions of our block-composition primitives support lists
of blocks, not just pairs of blocks.
Block.relative(b, name, s, a)

Make a new block whose base address is p+n, where p is
the base address of block b and n is a fresh, late compile-
time constant whose name contains the string name.
The parameters s and a give the size and alignment of
the new block.

Block.overlap(w, which end, bs)

Overlap the blocks in the list bs at either their high
or low ends as specified by which end . If bs is empty,
create an empty block whose address is w bits wide.

Block.cat(w, bs)

Concatenate the blocks in the list bs. If bs is empty,
create an empty block whose address is w bits wide.

As an example, Figure 1a shows the part of our compiler-
configuration code that specifies stack layout for a C call-
ing convention on the Intel x86 platform. The x86 layout
function creates and uses the nonstandard block blocks.ra
to mark the location of the return address. The call to
Block.relative creates a new block with size and align-
ment 4 and with an address relative to blocks.vfp, i.e., an
address that is the sum of a fresh late compile-time constant
and the address of blocks.vfp. The function then overlaps
the blocks that can safely be overlapped and concatenates
the rest using the variable layout; the curly braces and
commas are Lua syntax for a list literal. The resulting
block looks like the picture in Figure 1b. We make this
block the stack frame by calling Stack.freeze.

The function Stack.freeze takes a single block and
passes the block’s constraints to an equation solver in the
style of Ramsey (1996) or Knuth (1986, §585). Subject to
constraints of overlapping, concatenation, alignment, and
size, the solver computes the position of each block in the

7



〈x86 stack layout〉≡
function X86.layout["C"](_,proc)

local blocks = Stack.blocks(proc)
blocks.ra = Block.relative(blocks.vfp, "return address", 4, 4)

blocks.oldblocks = Block.overlap(32, "low", blocks.oldblocks)
blocks.youngblocks = Block.overlap(32, "low", blocks.youngblocks)
〈code to dump blocks if Debug.stack is set〉
local layout =

{ blocks.oldblocks -- <-- high addresses
, blocks.ra
, blocks.vfp
, blocks.stackdata
, blocks.continuations
, blocks.spills
, blocks.youngblocks
, blocks.stable_sp -- <-- low addresses
}

local block = Block.cat(32, layout)
Stack.freeze(proc,block)
return 1

end

oldblocks shared w/caller

ra
vfp

stack data

cont’ns

spills

private

youngblocks
shared w/callee

stable_sp

(a) (b)

Figure 1: Stack-layout specification and picture for Intel x86

stack frame, and it computes the values of all the late
compile-time constants. Since the location of each slot is
expressed using such a constant, Stack.freeze then substi-
tutes the correct value of each constant in each instruction
throughout the procedure.

The example in Figure 1 is for a standard C calling con-
vention; for example, the young blocks are overlapped at
the low end and are placed above the stable location of the
stack pointer, which indicates that outgoing overflow pa-
rameters are deallocated by the caller. The layout for a
convention that supports tail calls is somewhat different.
The full C-- language permits a procedure to contain call
sites for many different kinds of conventions; in this case,
the details are more complex because we have to split the
young blocks into two groups depending on which conven-
tions do and do not support tail calls.

6 Completing the convention

Value passing and stack layout are not all there is to a call-
ing convention. A complete specification requires additional
information. In Quick C--, we specify a calling convention
using a record containing these fields:

• Three value-passing automata, which are described by
constructors from Section 3: one automaton each for call,
return, and cut to

• A stack-layout function, such as is shown in Figure 1a,
that composes the blocks of the stack frame

• The set of registers managed by the register allocator
and the subset that must be preserved across a call

• A function used to save a register that must be preserved,
as described below

• The direction of stack growth, the register used as the
stack pointer, and the alignment required of the stack
pointer at a call

• The identity of the party (caller or callee) that deallo-
cates overflow parameters and the identity of the party
that allocates overflow results

• Information about where the return address is passed
and saved

Adding a new calling convention is as easy as defining such
a record. The compiler looks up the record by name at
each call site and procedure definition. In the record, we
use a convention-dependent function to save registers: al-
though the compiler can save registers anywhere, the run-
time system may need for them to be saved in conventional
locations.

The contract with the run-time system A C-- run-
time system must be able to walk the stack and recover
values of callee-saves registers. C-- actually has a stronger
requirement: the run-time system must be able to find the
value of any live variable, not just a callee-saves register.
We use a single mechanism for both; this mechanism re-
members the (PC-dependent) location of each variable and
callee-saves register. But in a compiler for a simpler lan-
guage, such as C, the calling convention requires that callee-
saves registers be saved in conventional locations. We have
not implemented this convention, but we sketch an imple-
mentation based on blocks. We would use a table, indexed
by callee-saves register, to store for each register both a
one-slot block and a Boolean that indicates if the register
is spilled. When a callee-saves register is spilled, we would
use this table to find the spill location. We would also
record in the table the fact of the spill. Finally, we would
expose the table to the Lua code in the stack-layout func-
tion, which would include in the stack frame, in the con-
ventional places, only those blocks that are actually used
to hold spilled callee-saves registers.

8



7 Discussion

Although we expected parameter passing and stack layout
to be the central problems of implementing a calling conven-
tion, we also expected that they would be separate problems
requiring different solutions. We have been surprised by
the similarities. Both problems require allocation of loca-
tions, and each allocator is best expressed as an imperative
abstraction. Both kinds of allocation result in fixed-sized
blocks, which are best composed into a stack layout using
a declarative abstraction. The major differences are in the
complexity of the allocators. The stack-slot allocators are
so simple that we barely describe them in this paper. The
parameter-passing allocators—the automata—are so com-
plicated that it is not obvious how best to create them.

Automaton constructors We create an automaton as
a sequence of stages, where each stage is built using a
constructor. The constructors first choice and useregs
are general in the sense that if we have an automaton in
mind, we can use first choice and useregs to specify
the nodes and edges. (For full generality we would need
a constructor that allocates a memory location outside the
overflow block, but we have not found a convention that
needs such a constructor.) But automata for C conventions
have many nodes and edges, and automata for conventions
not constrained to support varargs have even more nodes
and edges. The constructors choice, regs by bits, and
regs by args make specifications easier to read, write, and
understand.

Our other significant automaton constructor is widen.
The widen stage does not affect the node/edge structure of
the automaton; it is used only to adapt a large location so
it can hold a small value. (It is the request that is widened;
the location used to satisfy the request is narrowed.) We
include the widening operation directly in the automaton,
but this operation could be pushed into another part of the
compiler, or in a system that does not keep track of widths,
ignored completely. For example, in vpo, the parameter-
passing automaton provides a location that is at least as
wide as is needed to hold the parameter. If the location is
wider than is needed, it is up to another part of the compiler
to figure out how to widen the value passed.3

Our automaton constructors may be viewed as parsing
combinators whose input is a sequence of types. While
we specify choice using explicit predicate functions, classic
parsing combinators handle choice using a success/failure
model and a choice operator that takes two parsers and
returns a parser (Hutton 1992). We could easily adopt this
model, but we think our choice operator and predicates
will be more accessible to a compiler writer who has not
seen parsing combinators.

We also tried constructors that use an exclusion relation.
Such a relation might say, for example, that when integer
register 5 is allocated, floating-pointer register 12 is marked
unavailable. Although Bailey and Davidson (1995) use ex-
clusion to describe the original MIPS calling convention,
we were unable to make exclusion work for today’s MIPS
calling convention. One case that is especially difficult is a
C procedure expecting three parameters with types double,
int, and double. Our experience suggests that exclusion is
less useful than regs by bits and regs by args.

Block composition The block abstraction is, as far as
we know, new. It works because it is simple, because it

3Private communication from Jack Davidson, 2 Oct 2002.

is applicative rather than imperative, and because it sup-
ports specifications that correspond closely to pictures of
stack layout found in programming manuals. The key idea
is to separate imperative allocation of slots from applica-
tive composition of blocks; an earlier version that supported
both imperative and applicative operations was much more
difficult to understand. Because each phase of our com-
piler has its own imperative allocator and its own block(s),
phases can easily execute in any convenient order.

Our compiler reuses stack slots only when it finds entire
blocks that don’t interfere. A more aggressive optimizing
compiler might use register-allocation techniques to maxi-
mize reuse of slots. Such a compiler could still use blocks,
but the stack-slot allocator would probably use a single allo-
cation area, which would get get turned into a single block.

The trickiest part of programming with blocks is giving
each block a suitable base address. We give each block an
address of the form VFP+n, where n is a fresh late compile-
time constant with an automatically generated name. We
carefully avoid writing code that uses the name of such a
constant. In an earlier version of our compiler, we often
shared names of such constants; for example, two differ-
ent modules in the compiler might both use the address
VFP + stackdata. Such code led to frequent bugs in
the compiler, perhaps because there is no programming-
language mechanism to control access to such names. In
our current compiler, when we need to share information
among modules, we give all modules access to a relevant
block, and the shared information is the address of that
block. The new style seems to result in fewer bugs.

When stack layout does go wrong, the equation solver
used in Stack.freeze is unable to solve the block equa-
tions: either there are more unknown late compile-time
constants than there are equations, or the equations are in-
consistent. Debugging these problems requires care, since a
late compile-time constant is a bit like a global variable: it is
hard to tell where it comes from. Good naming helps; each
constant’s name has a distinctive root that is mnemonic
and can be searched for in the compiler’s sources. It is also
useful for the frame-layout function to print all blocks, with
constraints, and for the constraint solver to indicate uncon-
strained or overconstrained variables. If all else fails, we
selectively turn off phases of the compiler or remove blocks
from the layout until the problem is identified.

Related work Our work is inspired and informed by Bai-
ley and Davidson’s (1995) work on automata for parameter
passing. We have not adopted their specification language,
CCL, because it is hard to apply to compiler construction—
a separate program generator is needed, and the semantics
of CCL are difficult to reconstruct without studying that
program generator. Our contribution has been to find a new
way to specify a Bailey/Davidson automaton: a way that
is easily included in a compiler and needs no program gen-
erator. For comparison, our constructors are implemented
in about 450 lines of Objective Caml; the interpreter and
program generator for CCL are about 2500 lines of Icon.

Our approach to frame layout is different from Bailey and
Davidson’s. One significant difference is how we account for
allocation of a new stack frame at a call. CCL treats the
movement of the stack pointer as a “view change,” which
renames all locations on the stack. In our solution, there
is no view change. Instead, we give special status to the
value of the stack pointer at procedure entry, calling it the
virtual frame pointer. Because the virtual frame pointer
never changes, the meaning of a reference relative to the
virtual frame pointer is fixed: no matter how the stack

9



pointer moves, our view never changes. We find this model
easier to work with than the view-change model.

The other significant difference is in the frame-size com-
putation. In CCL, this computation must be written ex-
plicitly by the specifier. It is not clear whether it can
be connected, even in principle, to the code that allocates
slots inside the compiler—instead, the compiler writer must
enforce the conventional layout constraints and guarantee
they are consistent with the frame-size computation. In our
solution, the frame-size computation is implicit in the com-
position of the blocks that make up the frame. Moreover,
because each slot lies in a particular block, the relative po-
sitions of slots in the frame are automatically guaranteed to
conform to the layout specified by the composition. Both
layout and size are described and can be changed in exactly
one place.

We get extra flexibility by writing the stack-layout spec-
ification in an embedded interpreted language. We plan
for this language to support automaton constructors and
calling-convention records as well, so we will be able to use
Lua to specify a new calling convention at compile time
without touching the Quick C-- compiler. We hope that
the flexibility of Lua will make it easy for authors of front
ends to undertake comparative experiments in the style of
Davidson and Whalley (1991) and thereby to find custom
calling conventions that maximize performance.

Acknowledgements John Dias, Dan Grossman, Glenn
Holloway, Andi Krall, Simon Peyton Jones, Mike Smith,
and David Whalley provided helpful comments on this
manuscript.

References

Appel, Andrew W. and Zhong Shao. 1992. Callee-save registers
in continuation-passing style. Lisp and Symbolic Computa-
tion, 5(3):189–219.

Bailey, Mark W. and Jack W. Davidson. 1995 (January). A
formal model and specification language for procedure call-
ing conventions. In Conference Record of the 22nd An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 298–310.

. 1996 (May). Target-sensitive construction of diagnostic
programs for procedure calling sequence generators. Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Pro-
gramming Language Design and Implementation, in SIG-
PLAN Notices, 31(5):249–257.

Benitez, Manuel E. and Jack W. Davidson. 1988 (July). A
portable global optimizer and linker. Proceedings of the
ACM SIGPLAN ’88 Conference on Programming Lan-
guage Design and Implementation, in SIGPLAN Notices,
23(7):329–338.

Chow, Fred C. 1988 (July). Minimizing register usage penalty
at procedure calls. Proceedings of the ACM SIGPLAN ’88
Conference on Programming Language Design and Imple-
mentation, in SIGPLAN Notices, 23(7):85–94.

Clinger, William D. 1998 (May). Proper tail recursion and space
efficiency. Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementa-
tion, in SIGPLAN Notices, 33(5):174–185.

Davidson, Jack W. and Christopher W. Fraser. 1980 (April).
The design and application of a retargetable peephole opti-
mizer. ACM Transactions on Programming Languages and
Systems, 2(2):191–202.

Davidson, Jack W. and David B. Whalley. 1991. Methods for
saving and restoring register values across function calls.
Software—Practice & Experience, 21(2):459–472.

Fraser, Christopher W. and David R. Hanson. 1995. A Retar-
getable C Compiler: Design and Implementation. Redwood
City, CA: Benjamin/Cummings.

Hutton, Graham. 1992 (July). Higher-order functions for pars-
ing. Journal of Functional Programming, 2(3):323–343.

Ierusalimschy, Roberto, Luis H. De Figueiredo, and Waldemar
Celes Filho. 1996 (June). Lua — an extensible extension
language. Software—Practice & Experience, 26(6):635–652.

Knuth, Donald E. 1986. Computers & Typesetting. Volume D,
METAFONT: The Program. Addison-Wesley.

Leroy, Xavier, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. 2001. The Objective Caml system
release 3.04: Documentation and user’s manual. INRIA.
Available at http://pauillac.inria.fr/ocaml/htmlman/.

Peyton Jones, Simon L., Dino Oliva, and T. Nordin. 1997.
C--: A portable assembly language. In Proceedings of the
1997 Workshop on Implementing Functional Languages,
Vol. 1467 of Lecture Notes in Computer Science, pages 1–
19. Springer Verlag.

Peyton Jones, Simon L., Norman Ramsey, and Fermin Reig.
1999 (September). C--: a portable assembly language that
supports garbage collection. In International Conference on
Principles and Practice of Declarative Programming, Vol.
1702 of LNCS, pages 1–28. Springer Verlag.

Probst, Mark. 2001 (February). Proper tail recursion in C.
Diplomarbeit Thesis, Institute for Computer Languages,
Technical University of Vienna.

Ramsey, Norman. 1996 (April). A simple solver for linear equa-
tions containing nonlinear operators. Software—Practice &
Experience, 26(4):467–487.

Ramsey, Norman and Jack W. Davidson. 1998 (June). Machine
descriptions to build tools for embedded systems. In ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES’98), Vol. 1474 of LNCS,
pages 172–188. Springer Verlag.

Ramsey, Norman and Simon L. Peyton Jones. 2000 (May). A
single intermediate language that supports multiple imple-
mentations of exceptions. Proceedings of the ACM SIG-
PLAN ’00 Conference on Programming Language Design
and Implementation, in SIGPLAN Notices, 35(5):285–298.

A Equational specifications for blocks

A block is created by specifying its base address, alignment,
and size; a newly created block has no constraints. Figure 2
shows the equations that govern composition of blocks by
concatenation and overlapping.

B C argument convention for the MIPS

The MIPS has a complex calling convention. To add to the
confusion, the convention has changed over the lifetime of
the architecture; Bailey and Davidson (1995) describe the
old convention, for example.

Floating-point parameters are allocated by argument
number, but other parameters are allocated by bit offset.
We therefore need both a bitcounter and an argcounter
stage. Because the type of the first parameter affects the
rules for passing later parameters in registers, we also need
a first choice stage.

〈mips automata〉≡
let arguments () =
let bits = ref 0 in
let arg = ref 0 in
widen (Aux.round_up_to ~multiple_of: 32) *>
bitcounter bits *>
argcounter arg *>

10



address(cat(hi , lo)) = address(lo)

alignment(cat(hi , lo)) = lcm(alignment(hi), alignment(lo))

size(cat(hi , lo)) = round up(size(lo), alignment(hi)) + size(hi)

constraints(cat(hi , lo)) = constraints(hi) ∪ constraints(lo) ∪

{address(hi) = address(lo) + round up(size(lo), alignment(hi))}

address(overlap(Low, x, y)) = address(x)

alignment(overlap(Low, x, y)) = lcm(alignment(x), alignment(y))

size(overlap(Low, x, y)) = max (size(x), size(y))

constraints(overlap(Low, x, y)) = constraints(y) ∪ constraints(x) ∪ {address(y) = address(x)}

address(overlap(High, x, y)) = address(x), if size ′(x) > size ′(y)

address(overlap(High, x, y)) = address(y), if size ′(x) ≤ size ′(y)

alignment(overlap(High, x, y)) = lcm(alignment(x), alignment(y))

size(overlap(High, x, y)) = max (size ′(x), size ′(y))

constraints(overlap(High, x, y)) = constraints(y) ∪ constraints(x) ∪

{address(y) + size
′(y) = address(x) + size

′(x)}

where size ′(b) = round up(size(b), alignment(b)) and lcm(n, m) is the least common multiple of n and m.

Figure 2: Equations for block composition

first_choice
[ is_hint "float",

〈automaton F : first parameter is floating-point〉
; is_any,

〈automaton R: first parameter is not floating-point〉
] *>
overflow ~growth:Memalloc.Up ~max_alignment:16

When the first parameter is not a floating-point param-
eter, we mostly pack parameters into integer registers 4–7,
regardless of type. The exception is that a 64-bit floating-
point parameter in the second position goes into integer
register pair 6–7, regardless of the size of the first parame-
ter.

〈automaton R: first parameter is not floating-point〉≡
choice
[ (fun width hint -> hint = "float" && width = 64),

regs_by_args arg [rpair 4; rpair 6];
(* r4/r5 is a placeholder; uses pair r6/r7 *)

is_any,
regs_by_bits bits [r 4; r 5; r 6; r 7]

]

When the first parameter is a floating-point parameter,
things are more sane and simple. The first two floating-
point parameters go into floating-point registers 12 and 14.
Depending on the size of the parameter, we use either a
single register or a register pair. Remaining floating-point
parameters, as well as any other kinds of parameters, are
placed first in integer registers and then in the overflow
block.

〈automaton F : first parameter is floating-point〉≡
choice
[ is_hint "float",

choice
[ is_width 64, regs_by_args arg [d 12; d 14];
is_any , regs_by_args arg [f 12; f 14]

];
is_any,

unit (* a stage that always passes to successor *)
] *>
regs_by_bits bits [r 4; r 5; r 6; r 7]

This specification is 28 lines of Objective Caml; for com-
parison, the CCL description of the older, simpler MIPS
convention is 27 lines of CCL.

11


